
Automation of Intelligence
Preparation of the Battlefield

- Final Report -

Hishan Adikari
Sathyanga Agalakumbura

Jayamal Jayamaha

Department of Computer Engineering
University of Peradeniya

Final Year Project (courses CO421 & CO425) report submitted as a
requirement of the degree of

B.Sc.Eng. in Computer Engineering

July 2020

Supervisors: Dr. Isuru Nawinne (Department of Computer Engineering, University of
Peradeniya), Dr. Janaka Alawatugoda (Department of Computer Engineering,

University of Peradeniya)

We would like to dedicate this thesis to who have done research on domain Intelligence
Preparation of Battlefield and the the supervisors of our project

Declaration

We hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university.
This dissertation is our own work and contains nothing which is the outcome of work
done in collaboration with others, except as specified in the text and Acknowledgments.

Hishan Adikari
Sathyanga Agalakumbura

Jayamal Jayamaha
July 2020

Acknowledgements

And we would like to acknowledge Dr. Isuru Nawinne and Dr. Janaka Alawatugoda
for their assistance and guidance with this research. I would like to thank Mr Sampath
Deegalla and Dr Damayanthi Herath for coordinating the Final Year Project.

Abstract

In military operations, armed forces have to get a better idea of the area in which they
have to operate including terrain features, threats, and avenues of approach. So they
gather intelligence on the location, enemy, weather, vegetation, infrastructure, and many
such factors before making decisions. This process is called ’Intelligence Preparation
of the Battlefield’ (IPB) where analyzing the situation and making decisions based on
predictions is the main target. Usually, this process happens manually by officers using
hard copy maps and it has several inconveniences described in detail in this report.

In our research we developed a tool for generating terrain features on a given map,
saving those maps in a database, adding more features as overlays, and adding properties
for them. Also, we implemented a set of algorithms and approaches for automating a set
of IPB processes and we compared the approaches to each other as well as compared
results with outputs from subject matter experts and current systems. In this report, we
present our methodology, design, approaches, algorithms, comparisons, and results in
automating the intelligence preparation of the battlefield.

Table of contents

List of figures viii

List of tables x

Nomenclature xi

1 Introduction 1
1.1 Background . 1
1.2 The problem . 2
1.3 The proposed solution . 2

2 Related work 3
2.1 IPB in other countries . 3
2.2 Use of Geographical Information System (GIS) 3
2.3 Terrain Analysis . 4
2.4 IPB Algorithms . 4

3 Design and Implementation 6
3.1 Work Breakdown . 6
3.2 Implementation . 6

3.2.1 Web-based platform to display overlays on a map. 6
3.2.2 Infrastructure to efficiently store data for overlays. 7
3.2.3 Integrating the data storing mechanism with graphical user interface. 8
3.2.4 A grid based combined obstacle overlay by collecting the vector

overlays to a grid. 11
3.2.5 Generating the potential mobility corridors in the terrain. 17
3.2.6 Risk evaluation of corridors to select safest avenues of approach . 30

Table of contents vii

4 Results and Analysis 38
4.1 Comparison of approaches . 38

4.1.1 Generalized Voronoi Diagram Method 39
4.1.2 k-shortest paths algorithm . 40
4.1.3 Dijkstra’s based path removing algorithm 41

4.2 Comparison Results . 42
4.3 Comparison with available systems . 43

4.3.1 Google map directions . 43
4.3.2 Comparison with result from a related works 44

5 Conclusions and Future Works 46

References 48

List of figures

3.1 Creating the battlefield . 9
3.2 Generated overlays added on the map . 9
3.3 Adding data to an geographic feature . 10
3.4 Save the data insertion . 10
3.5 System Architectural Diagram . 11
3.6 DEM raster image of University of Peradeniya Area, Sri Lanka 12
3.7 DEM raster image of University of Peradeniya Area after re-sampling to

10 times smaller cells . 13
3.8 Slope raster image of University of Peradeniya 14
3.9 Building grid, water grid, vegetation grid and road grid 15
3.10 An example voronoi diagram . 18
3.11 Generalized Voronoi Diagram for University of Peradeniya 20
3.12 set of paths selected using GVD . 20
3.13 10 least cost paths . 22
3.14 Path crossing occasions . 23
3.15 Issue of having close and parallel paths (Left) and parts that need that

issue to be corrected marked (Right) . 24
3.16 Rasterized image of paths grid . 24
3.17 Paths after correction . 27
3.18 Path limitation due to choke points . 28
3.19 Computer generated paths after removing choke point effect 31
3.20 Threat variation from an enemy building 32
3.21 Flow of the code . 32
3.22 When all buildings are single floor(LEFT), when top enemy building was

made two story (MIDDLE) , when a close building of it also made two
story (RIGHT) . 35

3.23 Variation of threat with elevation . 36

List of figures ix

3.24 Variation of threat with vegetation . 36
3.25 Mobility corridors in Faculty of Engineering map 37

4.1 Sample battlefields for time comparison 38
4.2 Plot of time taken for voronoi diagram vs number of cells 39
4.3 Plot of time taken for k-shortest paths algorithm vs number of cells . . . 40
4.4 Plot of time taken for Dijkstra’s based path removing algorithm vs number

of cells . 41
4.5 Variation of time taken for three approaches 42
4.6 Comparison with Google direction, Our System generated paths (LEFT)

Google Directions for vehicles(MIDDLE) and Google directions for walk-
ing(RIGHT) . 43

4.7 Avenues of approaches by researcher’s algorithms (LEFT) and subject
matter expert(RIGHT), (C. Grindle, M. Lewis, R. Glinton, J. Giampapa,
and K. Owens 2004, Fig. 5 and 6, p. 4) 44

4.8 Avenues of approaches by our IPB tool 45

List of tables

4.1 Time taken for Generalized Voronoi Diagram Method 39
4.2 Time taken for k-shortest paths algorithm Method 40
4.3 Time taken for Dijkstra’s based path removing algorithm Method 41
4.4 Qualitative comparison between approaches 43

Nomenclature

Acronyms / Abbreviations

COAs Courses of Action

COO Combined Obstacle Overlay

DEM Digital elevation model

GIS Geographic Information System

GVD Generalized Voronoi Diagram

IPB Intelligence Preparation of the Battlefield

JS Java Script

JSON Java Script Object Notation

NASA National Aeronautics and Space Administration

OSM Open Street Map

REST Representational State Transfer

SME Subject Matter experts

SRTM Shuttle Radar Topography Mission

Chapter 1

Introduction

1.1 Background
IPB is a process that starts in advance of operations and continues during operations
planning and execution. It provides guidelines for the gathering, analysis, and organization
of intelligence. The purpose of this intelligence is to inform a commander’s decision
process during the preparation for, and execution of a mission. Therefore IPB is a
Command and staff tool which allows systematic and continuous analysis of the enemy
and the battlefield environment. It presents the results of the process in a graphical
format. It is an integrated method of analysing Enemy, Ground and Friendly Forces
factors in the Estimate. Basically there are four steps in IPB process. They are,

1. Define the battlefield environment

2. Describe the battlefield’s effects

3. Evaluate the threat

4. Determine threat COAs

The resulting product of IPB is identification of various areas of the battlefield that affect
Courses of Action (COAs). The four distinctive courses of action are,

1. engagement areas

2. battle positions

3. infiltration lanes

4. avenue of approach

1.2 The problem 2

Any force that has the control of the key terrain has the military advantage. Key
terrain areas cannot be defined by geographical features alone. The evaluation of terrain
features must be fused with information about weather, enemy asset types, friendly and
enemy range of fire, enemy doctrine and type of operation.

1.2 The problem
The problem with current process is that IPB is done manually by intelligence officers
using hard copy maps on which they annotate various significant areas, such as key
terrain or defensible terrain. This manual process suffers from a number of inefficiencies
as described below.

1. No variable zooming in and out to obtain desired level of detail

2. Annotating the maps is time consuming.

3. Notations on maps get cluttered with the risk of being misread.

4. Information could be disregarded or not used effectively in the process of the IPB

1.3 The proposed solution
To address these problems the best solution is an automated system which can present
geographical, climate and infrastructure data on top of a base map, analyze data, present
graphical representations and make users interact with the map using a flexible user
interface.

A detailed database with low level terrain information like buildings, vegetation,
elevation slopes and topology and computational algorithms to transform these low level
terrain information to higher level information such as maneuverability of a force, threats
for maneuverability from enemies are some components that should be included in the
automated system.

Since the IPB process is an iterative process that done throughout an operation, the
computational algorithms must be efficient and should work with real time data. A user
friendly user interface must be there to add information they have and get and see stored
information on the map.

So decision support tools that automate part of the process are highly needed. In this
paper, we present a set of algorithms, tools and approaches for automating Intelligence
Preparation of the Battlefield process for each step in the IPB process.

Chapter 2

Related work

2.1 IPB in other countries
Many countries have developed an automated IPB systems for their armies. As an
example, army of the Czech Republic has an automated IPB system as a part of
knowledge development in their conditions [1]. New Zealand has automated IPB system
for contemporary operating environment.

Researchers in [2] and [3] have used the Compact Terrain Database (CTDB) format
used by the OneSAF Testbed Baseline simulation software as the terrain representation
and used grid of elevation values as well as an associated soil type for each grid cell to
continue the development of automation algorithm for IPB process.

Researchers in [4] have shown that a GIS can be used to produce representations for
qualitative spatial reasoning and the geometric processing facilities of the GIS provide the
capabilities in a metric diagram. They have founded that qualitative spatial reasoning
can evaluate trafficablity of terrain.

2.2 Use of Geographical Information System (GIS)
Research [5] has also proposed a GIS model to conduct the IPB process using ArcGIS
software.

According to the [6], it describes the usage of GIS for geo-reconnaissance in army.
And also GIS can give specific information about buildings, devices and objects on the
battlefield using their geo location and field data. And also, it provides proper security
mechanisms by using planning strategies, more further management strategies. And

2.3 Terrain Analysis 4

getting information from the intelligence services for attacking and planning routes of
movement is done basically with the information gained by GIS.

2.3 Terrain Analysis
Terrain analysis is a requisite part of an IPB process in a military operation. From
this analysis, it is able to build extensive databases for each and every potential area of
operations. This is the foundation for the intelligence, tactical operations and decision
making. Terrain features can continuously change according to the earth’s surface and
therefore terrain databases must also be continuously updated and revised. Authors in
[7] clearly say that terrain analysis is a must in decision making process. And according
to this, manual terrain analysis procedures use basic doctrine as a primary source of
current available information for planning,conducting and supervising the terrain analysis
procedure.

Authors in [8] have explored how to fuse intelligence data with terrain data and
use for IPB. According to [8] any force that has the control of the key terrain has the
military advantage. Key terrain examples include road intersections, a bridge over a
river or terrain. Key terrain areas cannot be defined by geographical features alone. The
evaluation of terrain features must be fused with information about weather, enemy
asset types, friendly and enemy range of fire, enemy doctrine and type of operation. It
describe how the IPB process happen in battlefield using examples.

[9] discuss about the influence of slope in terrain on walking activity. They have
analysed terrain features like slope on the human maneuver.

2.4 IPB Algorithms
Authors in [3] have created a combined obstacle overlay using terain data and have
used generalized voronoi diagrams to generate a avenues of approaches and analyzed
the circuit diagram using electrical circuit model to explain mobility in paths. But the
example battlefield they have used is very small and hence the voronoi circuit is simple.

[4] discuss how to generate trafficability using qualitative analysis of terrain. So
here in the our research we used qualitative as well as quantitative analysis to get the
trafficability.

Authors in [10] has developed algorithms to find shortest route to attack and retreat
as well as to find the range of influence of the enemy and friendly units. In our research

2.4 IPB Algorithms 5

we developed the range of influence algorithm more combining the terrain features as
well.

In [11], they use ant colony optimization (ANTS) to determine possible avenues of
approach for the enemy, given a situation picture. ANTS is about finding good paths
through graphs. Artificial Ants stand for multi-agent methods inspired by the behavior
of real ants.

Also a final year research group from Faculty of Engineering, University of Peradeniya
has done research about using GIS to get and draw intelligence data on terrain maps
and use A* algorithm to find a shortest path between two locations excluding drawn
obstacles.

Chapter 3

Design and Implementation

3.1 Work Breakdown
The research was basically spllited in to two major sections such that each section contain
three milestones. The two sections was,

1. Visual Support for Automating the Intelligence Preparation for Battlefield (IPB)
Process

2. Implement Automation of Intelligence Preparation for Battlefield

So the six milestones for the project was as follows,

1. Web-based platform to display overlays on a map.

2. Infrastructure to efficiently store data for overlays.

3. Integrating the data storing mechanism with graphical user interface.

4. A grid based combined obstacle overlay by collecting the vector overlays to a grid.

5. Generating the potential mobility corridors in the terrain.

6. Risk evaluation of corridors to select safest avenues of approach.

3.2 Implementation

3.2.1 Web-based platform to display overlays on a map.

As the IPB need a visual tool that allows military staff to add battlefield data in to the
system and also visualize them as overlays, we needed to firstly develop a web based

3.2 Implementation 7

platform to add overlays and visualize them. So we firstly researched about a framework
that we can use to do the map based functions. Simply from front-end side the application
should work like a GIS software. Following technologies were chosen by us to be used fro
the web platform.

Leafletjs – Leaflet is the leading open-source JavaScript library for mobile-friendly
interactive maps.

Open street Maps – OpenStreetMap is a free editable map of the whole world
that is being built by volunteers largely from scratch and released with an open-content
license.

3.2.2 Infrastructure to efficiently store data for overlays.

We needed to find a data storing mechanism and also a data format to store the overlay
data. As the data in overlay are spatial data with attributes, We researched about the
available methods to store such data.

So the available options to store those data were using a vector format or a raster
format. So as our web application was JavaScript based, we choose GeoJSON which is a
format for encoding a variety of geographic data structures.

To store and provide the required overlay information relevant to battlefields, there
should be a back-end application. As our future algorithms and models are based on
python, we used Python Flask as the web framework for our back-end and the we decided
to use REST architecture to build the back-end web service.

Following were the attributes we defined for our overlays

1. Building

(a) No of occupants

(b) Status

(c) Material

(d) Building Type

(e) No of stories

2. Vegetation

(a) Vegetation Type (grassland, shrubland, woodland, medium density forest,
high denisty forest, unknown)

3. Water

3.2 Implementation 8

(a) Water body type (water, river, reservoir, dock, wetland, unknown)

(b) Mark known points of shallow or deep

4. Roads

(a) Road type (tertiary, track, unclassified, secondary, trunk, primary, motorway
link, trunk link, primary link, road, secondary link, tertiary link, motorway)

5. Elevation

(a) Elevation value

3.2.3 Integrating the data storing mechanism with graphical
user interface.

Finally we had to integrate the back-end we developed using the data storing mechanism
and data retrieving mechanisms with the front-end developed with map overlays

So in our first section of the project, we implemented the web application tool to
perform following major tasks.

• Create and save multiple battlefields(maps).

• Automatically generate the buildings, water, roads, elevation, vegetation overlays
when a new battlefield is created.

• View a battlefield on user interface graphically with a map (Satellite or Topograph-
ical)

• View the overlays generated for the battlefield graphically on the map separately.

• Add new buildings, water bodies, vegetation areas, roads on the battlefield using a
drawing tool

• Add values for the defined attributes of the newly drawn shape.

• Edit values of attributes of automatically generated geographical features.

• Remove geographical features of overlays.

• Save changes to be able to access later.

• All the information are stored in the back-end.

3.2 Implementation 9

Fig. 3.1 Creating the battlefield

Fig. 3.2 Generated overlays added on the map

Figure 3.1 shows the how to select the battlefield using a map interface in the tool.
The architecture implemented for the system was basically a 3-Tier Architecture.

Presentation layer being our web tool using LeafletJS, Application layer being the python
web application using Flask and use REST web services to communicate with Presentation
layer. Data layer is the file system which stores GeoJSON files in a hierarchical structure.
Figure 3.5 is the system architectural diagram

3.2 Implementation 10

Fig. 3.3 Adding data to an geographic feature

Fig. 3.4 Save the data insertion

The auto generation of overlays happen in IPB Service Layer, where the available
geographical data for Sri Lanka stored in the server are processed in order to produce
the overlays of the given boundaries.

We have obtained relevant digital geographical data for Sri Lanka and pre-processed
them to suit the overlays we are considering.

3.2 Implementation 11

Fig. 3.5 System Architectural Diagram

The Elevation data for Sri Lanka have been obtained from highest-resolution topo-
graphic data generated from NASA’s Shuttle Radar Topography Mission (SRTM). We
generated the island wide 25m contour lines using that DEM data and that is used for
creating elevation overlay. Also we stored the raster DEM file in server for some other
functions including trafficability calculation.

OpenStreetMap data for Sri Lanka were obtained from https://download.geofabrik.de/asia/sri-
lanka.html and processed to obtain overlay data for Sri Lanka.

• OSM Land Use data was used to obtain vegetation overlay by filtering vegetation
and mapping their properties to our defined attributes.

• OSM Building data was processed to get building overlay such that their properties
mapped into our defined building attributes.

• OSM water data was cnoverted into water overlay

• OSM road data was converted in to road overlay.

3.2.4 A grid based combined obstacle overlay by collecting the
vector overlays to a grid.

As we have built the overlays using a vector format with properties, we needed to convert
those data overlays to grids of their properties as grid based analysis is used for the

https://download.geofabrik.de/asia/sri-lanka.html
https://download.geofabrik.de/asia/sri-lanka.html

3.2 Implementation 12

processing. We started from the elevation raster file of Sri Lanka obtained from SRTM
dataset. In our program to get the combined obstacle overlay first step was to get the
elevation grid. So our program was added the functionality to clip the Sri Lanka elevation
raster file to the size of the battlefield firstly.

The NASA’s Space Shuttle Radar Topography Mission (SRTM) DEM data’s resolution
is about 30 meters. It has pixels (cells) of grid approximately 30m containing elevation
data as shown in Figure 3.6

Fig. 3.6 DEM raster image of University of Peradeniya Area, Sri Lanka

We needed to map these elevation data to a grid of cells of size 10 times smaller than
SRTM data resolution for better accuracy as 30m is not a good resolution for finding
mobility. So elevation data graph was resampled using bi-linear interpolation in order
to reduce the resolution of the overlay grid size to about 3 meters. The elevation data
raster overlay after re-sampling is shown in Figure 3.7.

3.2 Implementation 13

Fig. 3.7 DEM raster image of University of Peradeniya Area after re-sampling to 10 times
smaller cells

So the other overlay grids was also to be built to the same shape of the elevation grid
obtained, such that they can be put one on other.

So next from the elevation grid, an additional grid of slope was derived. The slope
grid is produced such that slope at grid cell (x,y) is assigned the mean of the slope
between (x,y) and each of the surrounding grid cells. Figure 3.8 shows the generated
slope overlay for above elevation example.

Rasterization techniques were used to get the rater images of the building, water, road
and vegetation overlays preserving their properties and those raster images of the overlays
were converted to a numpy array for our processing. Figure 3.9 show the original map
with the building grid, water grid, vegetation grid and road grid obtained for University
of Peradeniya using our program.

3.2 Implementation 14

Fig. 3.8 Slope raster image of University of Peradeniya

Our target in this milestone was to obtain combined obstacle overlay (coo) by com-
bining all these overlays and to construct an overlay called trafficability grid considering
all those overlays (elevation, slope, building, vegetation, water, roads)

Trafficability grid is a grid witch has cells representing squares on land, where each
grid cell represent the trafficability of the cell. In another way each cell give a value
defining how much it is difficult to troop maneuver withing that cell.

We considered the electric flow model as a foundation of our algorithm to get
trafficability grid. In electric current point of view, the electric current or the flow of
electrons is determined by the resistance of the medium. The resistance is determined by
the resistivity of the materials used in the medium. If the resistance per unit length is k,
the resistance of l length medium becomes k x l.

So for each property that we consider that would effect trafficability from the overlays,
we defined a value denoting resistance per distance for troop maneuver. So the total

3.2 Implementation 15

Fig. 3.9 Building grid, water grid, vegetation grid and road grid

resistance per distance for a given grid cell is the sum of all resistances per length of
properties that belong to that cell.

So the pseudo code for our algorithm used in obtaining the trafficability using the
resistance model is given below.

func t i on t r a f f i c a b i l i t y (coo) :
c r e a t e empty g r id t r a f f i c a b i l i t y
elevation_min = minimum(coo . e l e v a t i o n)
f o r each c e l l in coo :

s l ope = c e l l . ge tS lope ()
i s B u i l d i n g = c e l l . i sBu i ld ingHere ()
isWater = c e l l . isWaterHere ()
isRoad = c e l l . isRoadHere ()
vege ta t i onLeve l= c e l l . v ege ta t i on ()
r e l a t i v e _ e l e v a t i o n = c e l l . g e tE l eva t i on () − elevation_min
i sBr i dge = isWater and isRoad

3.2 Implementation 16

// r e s i s t i v i t y o f c e l l
c e l_re s = r e l a t i v e _ e l e v a t i o n

i f s l ope > max_slope_threshold :
c e l_re s = ce l_re s + re s i s t i v i t y_heavy_s l ope

i f isRoad :
c e l_re s = ce l_re s + r e s i s t i v i t y _ r o a d

e l s e i f i sB r i dg e :
c e l_re s = e l e v a t i o n + r e s i s t i v i t y _ b r i d g e

e l s e i f i s B u i l d i n g :
c e l_re s = ce l_re s + r e s i s t i v i t y _ b u i l d i n g

e l s e i f isWater :
c e l_re s = ce l_re s + r e s i s t i v i t y _ w a t e r

e l s e i f v ege ta t i onLeve l == gra s s l and
ce l_re s = ce l_re s + r e s i s t i v i t y _ v e g e t a t i o n _ g r a s s l a n d

e l s e i f v ege ta t i onLeve l == shrubland
ce l_re s = ce l_re s + re s i s t i v i t y_vege ta t i on_shrub l and

e l s e i f v ege ta t i onLeve l == woodland
ce l_re s = ce l_re s + res i s t i v i ty_vegeta t i on_wood land

e l s e i f v ege ta t i onLeve l == medium dens i ty f o r e s t
c e l_re s = ce l_re s + res i s t iv i ty_vegetat ion_medium_dens i ty_fores t

e l s e i f v ege ta t i onLeve l == high dens i ty f o r e s t
c e l_re s = ce l_re s + re s i s t i v i t y_vege ta t i on_h igh_dens i t y_ fo r e s t

e l s e i f v ege ta t i onLeve l == unknown
ce l_re s = ce l_re s + res i s t iv i ty_vegetat ion_unknown

e l s e :
c e l_re s = ce l_re s + res i s t i v i ty_vegeta t i on_empty

update cor re spond ing c e l l in t r a f f i c a b i l i t y g r id with ce l_re s
re turn t r a f f i c a b i l i t y

So for the operation of this algorithm, we defined few attributes that describe the
resistivity per length for different terrain features as below.

• max slope threshold = 0.4

• resistivity vegetation grassland = 30

• resistivity vegetation shrubland = 100

3.2 Implementation 17

• resistivity vegetation woodland = 200

• resistivity vegetation medium density forest = 400

• resistivity vegetation high density forest = 600

• resistivity vegetation unknown = 200

• resistivity vegetation empty = 65

• resistivity building = 1000

• resistivity road = 1

• resistivity bridge = 1

• resistivity water = 10000

• resistivity heavy slope = 800

These attributes were given assumed values based on the mobility in each situation.

3.2.5 Generating the potential mobility corridors in the ter-
rain.

So next we moved to generating potential mobility corridors that troops can move from
a given starting point to an destination. The trafficability grid that was generated in last
milestone, was used in determining the mobility corridors, or the avenues of approach.
Trafficabilty grid represent a relative cost or a resistance of moving per a unit length, for
each cell in grid. Here unit refer to width of a cell in the grid.

To generate the potential mobility corridors, we experimented three approaches.
Those were,

1. Generalized Voronoi Diagram Method

2. k-shortest paths algorithm

3. Dijkstra’s based path removing algorithm

3.2 Implementation 18

Fig. 3.10 An example voronoi diagram

Generalized Voronoi Diagram Method

The voronoi diagram method was to get mobility corridors from a voronoi diagram drawn
for a GO-NO GO terrain map generated from trafficability grid. See Figure 3.10

Let P = {p1, p2, · · ·, pn} be a set of n distinct points or sites in the plane. The
Voronoi diagram of P is the subdivision of the plane into n cells, one for each site in P ,
with the property that a point q lies in the cell corresponding to a site pi if and only if
dist(q, pi) < dist(q, pj) for each pj ∈ P with j ̸= i. If the sites are replaced with polygons,
the above definition holds true with a more complex distance function that represents
the minimum distance between a point and a polygon in the plane. Such a diagram for
polygons instead of points is called the Generalized Voronoi Diagram (GVD). This help
to find avenues of approach, defensible areas, and other important tactical features of
terrain.

Though the optimized algorithm for voronoi diagram is Fortune’s algorithm with time
complexity O(n log n), as we need to get the Generalized Voronoi Diagram for polygons,
we used the basic algorithm with O(n2) for that. Following is the pseudo-code for the
generation of generalized voronoi diagram from GO NO-GO terrain grid.

f unc t i on vorono i (go_no_go_grid) :
c r e a t e new gr id border_grid

3.2 Implementation 19

f o r each no_go c e l l in go_no_go g i rd :
i f any neighbor c e l l i s a go c e l l :

mark c e l l as a border in border_grid

c r e a t e an array o f array o f c e l l s (say c e l l _ f a m i l i e s)
//To s t o r e connected c e l l s s epa r a t e l y

add connected c e l l groups to c e l l _ f a m i l i e s
// Using a connected c e l l a lgor i thm

depth_map = gr id o f s i z e go_no_go_grid
color_map = gr id o f s i z e go_no_go_grid
put i n f i n i t y to a l l c e l l s in depth_map
put zero to a l l c e l l s in color_map

family_id = 0

f o r each fami ly in c e l l _ f a m i l i e s :
increment family_id by 1
c r e a t e a go_no_go gr id s i z e d g r id (distance_map)
get min geometr ic d i s t anc e o f each c e l l from c e l l s o f f ami ly
Add min geometr ic d i s t anc e to distance_map
where distance_map value < depth_map value

update the color_map , with family_id
update the depth_map , with distance_map value

c r e a t e new gr id voronoi_gr id

f o r each c e l l in color_map :
i f any neighbor c e l l i s not equal to c e l l va lue :

mark c e l l as a vorono i g r id in voronoi_gr id

re turn voronoi_gr id

Figure 3.11 is the voronoi diagram resulted for our sample battlefield. It shows
the GVD drawn to the battlefield without restricted terrain(left) and with restricted
terrain(right)

3.2 Implementation 20

Fig. 3.11 Generalized Voronoi Diagram for University of Peradeniya

So this diagram is a network of paths, which gives many paths that avoids restricted
NO-GO areas. Each edge of the voronoi graph corresponds to a path between two
restricted NO-GO features. So basically voroni diagram gives an abstract set of paths
that one can go avoiding only NO-GO areas. So we can select set of routes that join two
positions from the network as Figure 3.12.

Fig. 3.12 set of paths selected using GVD

3.2 Implementation 21

But the problem in this method is that only the restricted terrain is considered for
path generation. the other costs of mobility like cost from elevation, vegetation, roads,
slope is not considered as the trafficability grid is mapped to a binary grid of GO, NO-Go
and used here. So the accuracy is low as many data are not used.

Considering the time complexity of the algorithm, the algorithm we used for generating
this generalized voronoi algorithm has time complexity O(n2), assuming the NO-GO
feature density is linearly proportional to number of cells(n) of a battlefield grid.

k-shortest paths algorithm

The k shortest path routing problem is a generalization of the shortest path routing
problem in a given network. It asks not only about a shortest path but also about next
k-1 shortest paths which may be longer than the shortest path. Our approach of finding
k shortest paths in trafficability grid was actually finding the lowest cost paths, as the
grid contain the cost values. We approached the k shortest paths problem by extending
Dijkstra algorithm. We have to give start and end locations to find paths here first.

Following is the pseudocode for the generation of paths using k-shortest paths
algorithm from trafficability terrain grid.

f unc t i on k sho r t e s t (t r a f f i c a b i l i t y _ g r i d , s t a r t _ c e l l , end_ce l l) :

count = gr id o f z e r o s o f s i z e t r a f f i c a b i l i t y g r id
temp_paths = queue to s t o r e temporary paths
f ina l_paths = queue to s t o r e f i n a l paths

add s t a r t c e l l to temp_paths with co s t 0
whi l e temp_paths i s not empty and count [end_ce l l] < k :

cur r ent_shor t e s t = get s h o r t e s t from temp_paths
remove cur r ent_shor t e s t from temp_paths
current_end = l a s t c e l l o f cu r r ent_shor t e s t
increment count va lue o f current_end by 1

i f current_end == end_ce l l :
add cur r ent_shor t e s t to f ina l_paths

i f count value o f current_end <= k :
f o r a l l ne ighbor c e l l s o f current_end :

new_path = path j o i n i n g ne ighbor c e l l to cur r ent_shor t e s t
update co s t o f new_path

3.2 Implementation 22

temp_paths . append (new_path)

re turn f ina l_paths

So we generated 10 least cost paths taking k as 10, for 6 sample battlefields. Figure 3.13
is an image of output paths obtained for a sample battlefield.

Fig. 3.13 10 least cost paths

The problem in this result is that though there are several paths given as output in
the result, they are actually represent a single path, just few small changes at few points
are there. So those few changes make them the next least cost path. but there are not
more different than the earlier path. But what we need is a set of paths that are different
actually and go through a different area. So it is clear that k-shortest path algorithm
doesn’t give the best fit answer and we need not the next least cost paths, but the paths
that are really different from others.

Dijkstra’s based path removing algorithm

Our third approach was a dijkstra’s algorithm based approach that include path segment
removing and path correcting functions. Dijkstra’s algorithm is a least cost or least

3.2 Implementation 23

distance finding algorithm between nodes in a graph, conceived by computer scientist
Edsger W. Dijkstra in 1956.

Basically for the trafficability grid, when performed Dijkstra’s algorithm giving two
points as start and end, outputs a path with the minimum cost, that one can go. But
it just give one path and we need a set of different paths. After obtaining a shortest
path, if we remove that path completely defining it as restricted, dijkstra’s algorithm
will next find another path that is completely independent from earlier path. They will
not have common edges. But they can cross each other in places where both routes are
in diagonal directions as in Figure 3.14.

Fig. 3.14 Path crossing occasions

Then the set of paths give much different avenues of approaches as we need, but in
cases where the route lie on common areas that both can use same path, that doesn’t give
the correct path and have multiple parallel paths. That happen as the paths coming next
after the first path cannot use the same edges used by earlier paths. More importantly
when the first path use a already available road in it, next path that need to use the
road to some extent cannot use it and it will go in other areas close and parallel to road.
See the Figure 3.15 that show the close and parallel path issue in this approach.

So a correction had be done to the close and parallel paths issue in common sections
in routes. In the above image those places are circled with a red marker. So we developed
a correction algorithm to correct that issue.

When the paths generated were added to a grid, where cells belonging to paths have
the cost defined in trafficability grid and other non path areas have a very high cost, the
rasterized grid looks like Figure 3.16.

So in that grid view, the close and parallel, unwanted paths can be seen merged
together as they are closer cells. Therefore in our correction algorithm, we made this grid
and used dijkstra’s algorithm again to this new grid to get least cost paths out of this
faulty path set. Also this correction algorithm has a path section removing mechanism

3.2 Implementation 24

Fig. 3.15 Issue of having close and parallel paths (Left) and parts that need that issue to
be corrected marked (Right)

Fig. 3.16 Rasterized image of paths grid

3.2 Implementation 25

as well as a mechanism to identify which path section has to be removed before applying
dijkstra’s algorithm again to avoid resulting same path.

In paths thickness is obtained for each cells using the number of surrounding path
cells. When removing sections from the least cost path generated from new grid, first
the segments with different thicknesses are split and we give priority to segments where,
the path is thin (lowest width) and long (length with same thickness). Out of same
width segments one with maximum length is chosen. Further the paths get split based
on crossings as well, because in a crossing the number of surrounding path cells increase,
hence taken as an increase of thickness.

So following are the pseudo-codes for getting independent paths, path correction
algorithm and obtaining sections to remove from paths respectively.

pseudo-code for getting independent paths
Note: max_factor = 5 means, only paths of cost more than 5 times of initial path

will be resulted. Path correction function correct_paths is explained in next section.

func t i on independent_paths (t r a f f i c a b i l i t y _ g r i d)
max_factor = 5
c r ea t e paths array to s t o r e paths
lc_path = get l e a s t co s t path from t r a f f i c a b i l i t y _ g r i d
add lc_path to paths
l i m i t = max_factor ∗ co s t o f lc_path
whi le t rue :

except s t a r t and end c e l l :
mark c e l l o f l c path as r e s t r i c t e d

lc_path = get l e a s t co s t path from t r a f f i c a b i l i t y _ g r i d
i f c o s t o f lc_path > l i m i t :

break whi l e loop
add path to path

return correct_paths (paths , t r a f f i c a b i l i t y _ g r i d)

pseudo-code for path correction algorithm
Note: function find_section_to_remove is explained in next section.

func t i on correct_paths (paths , t r a f f i c a b i l i t y _ g r i d)
k = a very l a r g e value
c r e a t e array new_paths to s t o r e co r r e c t ed paths
c r e a t e new_grid o f shape t r a f f i c a b i l i t y _ g r i d

3.2 Implementation 26

change a l l c e l l va lue s o f new_grid to k
f o r each path in paths

f o r a l l c e l l s o f the path :
update new_grid with value from t r a f f i c a b i l i t y _ g r i d

f o r each path in paths
lc_path = get l e a s t co s t path from new_grid
add lc_path to new_paths
section_to_remove = find_section_to_remove (lc_path , new_grid)
mark c e l l s o f section_to_remove with k in new_grid

re turn new_paths

Obtaining Sections to remove from paths respectively
Note: threshold = 6 means initially cells with 6 or more neighboring non-path cells

are considered as they are possible thinnest paths

find_section_to_remove (path , new_grid)
k = very l a r g e value used in new_grid
i n i t i a l l y con s id e r whole path as s e c t i o n to remove
c r e a t e array s e c t i o n s to s t o r e s p l l i t s e c t i o n s
th r e sho ld = 6
whi le s e c t i o n s i s empty and thre sho ld >= 0 :

i n s i d e_s e c t i on = f a l s e
l ength_of_sect ion = 0
s ta r t_ce l l_o f_se c t i on = path [0]
f o r c e l l in path :

empty_count = number o f ne ighbor ing c e l l with k
i f not i n s i d e_s e c t i on and empty_count >= thre sho ld :

i n s i d e_s e c t i on = True
s t a r t_ce l l_o f_se c t i on = c e l l
l ength = 0

i f i n s i d e_s e c t i on and empty_count >= thre sho ld :
l ength = length + 1

i f i n s i d e_s e c t i on and empty_count < thre sho ld :
i n s i d e_s e c t i on = False
in s e c t i o n s array :

s t o r e s t a r t_ce l l_o f_se c t i on as s t a r t
s t o r e c e l l as end

3.2 Implementation 27

s t o r e l ength
max_section = maximum length s e c t i o n from s e c t i o n s
th r e sho ld = thre sho ld − 2

return max_section

So after applying the correction the paths for above example looked like Figure 3.17.
Paths are shown in orange color.

Fig. 3.17 Paths after correction

So this approach could be identified as a successful one, as the more unique and
different avenues of approaches could be given as output. The routes that were given as
output were basically similar paths that a person who is familiar with this area would
choose.

Limitation at choke points
In this approach, a problem that we identified was, there is only a single path would

be given as output through a choke point. Choke points are the places where troops
have to maneuver through a very narrow area, where both the left and right sides are

3.2 Implementation 28

restricted areas. As example bridges, mountain passes, narrow areas between buildings
etc.

When generating paths, at initial state, when a path is there through a such choke
point, though there can be another path which is not exactly similar to this path and has
another approach but need to pass this choke point, it will not be given as output. The
reason is to happen such a thing there should be close and parallel path segments for
those two where there is should be common path. But that cannot happen as parallel and
close paths cannot pass restricted part at choke point and the only pass through choke
point has been occupied by first path. So to resolve this issue, if there is a choke point in
the path generated, before generating the next independent path the pass through choke
point must be unoccupied.

Figure 3.18 is an image where paths are generated between two locations in Unversity
of Peradeniya and the limitation of paths can be seen as there are two choke points here
(Akbar bridge and Peradeniya bridge) and hence the potential avenues marked in light
green color are not given in output. Paths in blue color are the computer generated
paths.

Fig. 3.18 Path limitation due to choke points

3.2 Implementation 29

As described in above to resolve this issue, an modification was done to the ’Getting
Independent Paths’ algorithm. The identified choke points were made unoccupied after
obtaining a path and before generating next independent path. For that instead of
making the whole generated path restricted, the cells excluding choke points in the path
were made restricted. So to find all choke points and remove path without choke points,
an algorithm was developed and it’s pseudo-code is as below.

func t i on non_choke_points (r e s t r i c t ed_gr i d , path) :
f r o n t _ c e l l = None
back_ce l l = None
c r e a t e array non_chokes_point_set
f o r each c e l l in path :

back_ce l l = f r o n t _ c e l l
f r o n t _ c e l l = c e l l
i f back_ce l l i s not None and f r o n t _ c e l l i s not None :

v_d = f r o n t _ c e l l [0] − back_ce l l [0]
h_d = f r o n t _ c e l l [1] − back_ce l l [1]
d i r e c t i o n s = None
i s_diagona l = False
i f (abs (h_d) − abs (v_d)) == 1 :

d i r e c t i o n s = (1 , 0 , −1, 0)
e l s e i f (abs (h_d) − abs (v_d)) == −1:

d i r e c t i o n s = (0 , 1 , 0 , −1)
e l s e i f (h_d ∗ v_d) == 1 :

d i r e c t i o n s = (1 , −1, −1, 1)
i s_d iagona l = True

e l s e i f (h_d ∗ v_d) == −1:
d i r e c t i o n s = (1 , 1 , −1, −1)
i s_d iagona l = True

is_choke = scan () // s t a r t scanning two s i d e s
i f not is_choke :

non_chokes_point_set . append (back_ce l l)
r e turn non_chokes_point_set

Note: choke_threshold = minimum distance to an obstacle for a cell to be a choke
point

func t i on scan (r e s t r i c t ed_gr i d , c e l l , d i r e c t i o n s , i s_d iagona l) :
restr icted_1_found = False

3.2 Implementation 30

restr icted_2_found = False
d i s tance_trave l ed = 0
di s tance_step = 1
i f i s_d iagona l :

d i s tance_step = square root o f 2
whi l e d i s tance_trave l ed <= choke_threshold :

d i s tance_trave l ed = d i s tance_trave l ed + dis tance_step
cu r r en t_ce l l 1 = (c e l l [0] + d i r e c t i o n s [0] , c e l l [1] + d i r e c t i o n s [1])
cu r r en t_ce l l 2 = (c e l l [0] + d i r e c t i o n s [2] , c e l l [1] + d i r e c t i o n s [3])
i f not restr icted_1_found and r e s t r i c t e d _ g r i d [cu r r en t_ce l l 1] == 1 :

restr icted_1_found = True
i f not restr icted_2_found and r e s t r i c t e d _ g r i d [cu r r en t_ce l l 2] == 1 :

restr icted_2_found = True
i f restr icted_1_found and restr icted_2_found :

re turn True
re turn Fal se

The scan function scan each cell in path in left and right directions up to the distance
defined as choke_threshold to find a obstacle, it there are obstacles in both directions
withing that limit, that cell is a choke point. We defined choke threshold as 4 units, that
will approximately equal to 12 meters.

So see the below Figure 3.19 of computer generated output of above scenario after
applying the fix to the ’Getting Independent Paths’ algorithm.

So now the result seems very similar to a human generated output.

3.2.6 Risk evaluation of corridors to select safest avenues of
approach

As we get set of distinct easiest avenues that can be used for troop maneuver, there
might be some risks in using the paths due to enemy locations. So in this milestone we
developed an algorithm to define the range of threats for the enemy locations annotated
by user and then use that range of threats to find threat for routes generated.

The general approach to get a range of threat was, the threat decreasing a uniform
amount when going away from the enemy location or building. So as we can define
buildings as enemy ones in our tool, the value must start decreasing from the wall of
the building to outside. As our representation of terrain was using a grid of cells, we
defined two 2d arrays of the shape of terrain grid called Enemy threat grid and Threat

3.2 Implementation 31

Fig. 3.19 Computer generated paths after removing choke point effect

decrement grid. In here Threat decrement grid has a value for each cell defining how
much threat will loss in this cell. The amount is the loss of threat per grid cell unit.
Using that we created the enemy threat grid that will finally have a value of threat for
each cell in the terrain. The value is between 0 and 10.

In here, what would decrease threat was only distance from the enemy building. So
the threat decrement grid has uniform values. So the threat range that is resulted is a
circular area around the building where threat last only to a maximum fixed distance
from borders of the building.When a same cell in threat array get values from two threat
locations, the maximum out of the threats at the cell due to all threat locations is kept.

So the rasterized image of threat variation from an enemy building is as Figure 3.20
when only distance is considered.

Figure 3.21 is the flow of the code we developed to get threat grid.

3.2 Implementation 32

Fig. 3.20 Threat variation from an enemy building

Fig. 3.21 Flow of the code

So the pseudo-code of the algorithm used to get the threat grid from a building when
given the border_cell_list, which is the list of cells in the buildings border of it is given
below,

3.2 Implementation 33

f unc t i on threat_gr id (bo rde r_ce l l_ l i s t , threat_decrement_array)
d e f i n e s t a r t i n g th rea t f o r t h i s bu i l d i ng as T
c r ea t e new gr id threat_range
f o r each c e l l in b o r d e r _ c e l l _ l i s t :
v i s i t e d = new gr id to s t o r e whether the c e l l v i s i t e d or not
q = new queue to s t o r e scanned c e l l s with th r ea t
add c e l l to the q with th rea t T
mark th rea t o f c e l l in threat_range as T
whi le q i s not empty :

cu r r en t_ce l l = get c e l l with maximum threa t c e l l from q
remove cu r r en t_ce l l from q
mark cu r r en t_ce l l as v i s i t e d in v i s i t e d

l e t d i s current_cel l_threat_decrement
d = threat_decrement_array_cel l [c u r r en t_ce l l]
th r ea t = threat_range [cu r r en t_ce l l]
f o r each unv i s i t ed neighbor c e l l o f cu r r en t_ce l l :

l e t n i s neighbor_cel l_decrement
n = threat_decrement_array_cel l [ne ighbor]
i f ne ighbor i s in d iagona l d i r e c t i o n :

threat_decrement = square_root (2) ∗ (d + n) /2
e l s e

threat_decrement = d + n) /2
ne ighbor_ce l l_threat = threa t − threat_decrement
i f ne ighbor_ce l l_threat > threat_range [ne ighbor] :

update threat_range with ne ighbor_ce l l_threat
add neighbor to q

return threat_range

Then we studied how the terrain features would effect the threat and how to introduce
those effects to our automated tool. From the features we have for terrain grid we
identified following features would effect threat range of an enemy building.

• Enemy building height

• Height of surrounding buildings

• Level of vegetation

• High elevation than enemy building height in surround area

3.2 Implementation 34

• Low elevation than enemy building ground.

So to add enemy building height to the code functionality we defined the starting
threat T of the algorithm according to the enemy building height. As the threats will
be mapped to range between 10 and 0 at the end, increasing starting threat at enemy
building is not an issue.

The best way to add the effect of surrounding features to the threat grid, we auto-
matically change the Threat_decrement_array according to the features. As example, in
the cells where there is a building, the threat decrement will be higher than normal cell.

So we defined following attributes that affect threat decrement array and assingned
some sample values for them and fine tuned the variables until a good result come.

In a normal flat terrain with no features like building or vegetation given, threat from
1 storied enemy building decrease uniformly up to 100m from border of the building.

So the average width of a cell in our grid ≈ 3m, So the range is about 33 units.

• threat_decrement_building_max, this is the threat decrement at places where a
building blocks visibility, normally it is a building with same number of stories or
more than the enemy building.

• threat_decrement_grassland, this is the threat decrement at places where there is
a grassland

• threat_decrement_shrubland, this is the threat decrement at places where there is
a shrubland

• threat_decrement_medium_forest, this is the threat decrement at places where
there is a medium_forest

• threat_decrement_high_forest, this is the threat decrement at places where there
is a high_forest

• threat_decrement_elevation_increment, this is the value which the available threat
decrement increase when the elevation is higher than the estimated building height

• threat_decrement_elevation_decrement , this is the value which the available
threat decrement decrease when the elevation is lower than the enemy ground level.

• building_floor_height_average, this is the multiplying factor to get estimated
building height from the number of stories of it.

3.2 Implementation 35

• range_increment_per_floor, normally range of the single storied building is 33
units, but it increase when the number of stories of enemy building increase. This
is the value in which the range increase per single storey.

following Figures in Figure 3.22 are images of the threat array generated in enemy
buildings by changing the terrain features.

Fig. 3.22 When all buildings are single floor(LEFT), when top enemy building was made
two story (MIDDLE) , when a close building of it also made two story (RIGHT)

When all buildings are two story, the threat range of enemy building is blocked by
surrounding buildings as in first image. So when the enemy building is made a two stroy
one, it’s range of threat doesn’t blocked by single floored buildings around. that is why
the range has not changed in middle image. So when a nearby surround building also
made two story as in right image, the range of enemy building will get effected from that.

Figure 3.23 shows the variation of threat with elevation right side of the building, the
elevation is high, it is higher than the height of the building, so the threat from building
has been limited to right side. Also to left of the building, you can see there is an increase
of threat. that is because the ground level to that side is lower than building ground level
as well as the vegetation is grassland, that cause more spread of threat towards that side.

Basically vegetation level effect threat range, in Figure 3.24 to left side of the building,
there is a heavy density forest, so the threat have been limited towards that side.

Finally obtaining the threat grid for the whole battlefield, we decided threats for the
routes generated between given coordinates. So the paths were colored in IPB tool using
the threats obtained for each routes as below. In the threat representation of the map,
the colors change from green to red to represent threat from 0 to 10 respectively.

Figure 3.25 is an image from IPB tool when potential mobility corridors were generated
and paths are colored according to threat level due to the enemy locations marked in red.

3.2 Implementation 36

Fig. 3.23 Variation of threat with elevation

Fig. 3.24 Variation of threat with vegetation

3.2 Implementation 37

Fig. 3.25 Mobility corridors in Faculty of Engineering map

Chapter 4

Results and Analysis

4.1 Comparison of approaches
We created 6 sample battlefields with different sizes in the same location, where it can be
assumed as a uniform restricted terrain is there. Then we used the algorithm to compare
time take for each.

Figure 4.1 shows the 6 sample battlefields created.

Fig. 4.1 Sample battlefields for time comparison

4.1 Comparison of approaches 39

Times for each approach of paths generation was measured and plotted for each
battlefield as below.

4.1.1 Generalized Voronoi Diagram Method

Table 4.1 shows the times for the algorithm of generation of paths for each battlefield using
generalized voronoi diagram method and Figure 4.2 shows the graphical representation
of the time variation with number of cells in the battlefield.

Table 4.1 Time taken for Generalized Voronoi Diagram Method

Battlefield No. of cells Area (square meters) time for algorithm (ms)
1 100 1014 0.998
2 1200 8910 30.926
3 1800 28600 134.635
4 7000 65100 874.651
5 20900 193800 5266.941
6 25200 234000 10767.204

Fig. 4.2 Plot of time taken for voronoi diagram vs number of cells

4.1 Comparison of approaches 40

4.1.2 k-shortest paths algorithm

Table 4.2 shows the times for the algorithm of generation of paths for each battlefield using
k-shortest paths algorithm method and Figure 4.3 shows the graphical representation of
the time variation with number of cells in the battlefield.

Table 4.2 Time taken for k-shortest paths algorithm Method

Battlefield No. of cells Area (square meters) time for algorithm (ms)
1 100 1014 781.912
2 1200 8910 29459.84
3 1800 28600 90515.703
4 7000 65100 378904.164
5 20900 193800 1548674.855
6 25200 234000 5015944.969

Fig. 4.3 Plot of time taken for k-shortest paths algorithm vs number of cells

4.1 Comparison of approaches 41

4.1.3 Dijkstra’s based path removing algorithm

Table 4.3 shows the times for the algorithm of generation of paths for each battlefield using
Dijkstra’s based path removing algorithm method and Figure 4.4 shows the graphical
representation of the time variation with number of cells in the battlefield.

Table 4.3 Time taken for Dijkstra’s based path removing algorithm Method

Battlefield No. of cells Area (square meters) time for algorithm (ms)
1 100 1014 13.963
2 1200 8910 32.913
3 1800 28600 38.897
4 7000 65100 41.888
5 20900 193800 121.674
6 25200 234000 191.484

Fig. 4.4 Plot of time taken for Dijkstra’s based path removing algorithm vs number of
cells

4.2 Comparison Results 42

4.2 Comparison Results
Chart in Figure 4.5 compares variation of time taken for three approaches with number
of cells.

Fig. 4.5 Variation of time taken for three approaches

The chart Figure 4.5 suggests that compared to time consumption, Dijkstra’s based
path removing algorithm is much time efficient than other two approaches. k-shortest
path approach is not good as it’s time consumption is much high as well as increase
exponentially with number of cells.

Following Table 4.4 is a qualitative comparison between outputs of the three ap-
proaches.

Considering these factors, it was decided to use Dijkstra’s based path removing
algorithm in our tool.

4.3 Comparison with available systems 43

Table 4.4 Qualitative comparison between approaches

Generalized Voronoi
Diagram Method

k-shortest paths algo-
rithm

Dijkstra’s based path
removing algorithm

Only GO,NO-GO terrain is
used

Trafficability grid is used
with all features

Trafficability grid is used
with all features

Paths does not depend on
cost of traveling

Paths depend on cost of
traveling

Paths depend on cost of
traveling

Different possible paths are
resulted, but some mis-
match is with paths

paths are not spread,
mostly same path with
small differences is resulted

Much spread can be seen
in paths, actually different
possible paths are resulted

Time taken for algorithm is
low (not the lowest) Heavy time consuption

Very low time taken (it is
the lowest out of three ap-
proaches)

4.3 Comparison with available systems

4.3.1 Google map directions

Basically the platform normally used to find paths to travel from one place to another place
is Google Map directions. Figure 4.6 shows the comparison of the avenues of approaches
generated between two positions separated by a river and the Google direction result for
those two positions.

Fig. 4.6 Comparison with Google direction, Our System generated paths (LEFT) Google
Directions for vehicles(MIDDLE) and Google directions for walking(RIGHT)

4.3 Comparison with available systems 44

Basically direction API consider only available routes to generate the paths. Some
times they give multiple paths possible but not to much deep level. So it doesn’t consider
the terrain features or any additional information we give on terrain in generation paths.
Also it does not suggest paths to maneuver through non road areas. So in case of
avenues of approaches our implementation is much successful towards obtaining avenues
of approaches for troop maneuver.

4.3.2 Comparison with result from a related works

In [3] the researchers have developed algorithms to generate avenues of approaches for a
small map using a trafficability array and generalized voronoi diagram. Also they have
evaluated the avenues of approaches of that map by an subject matter experts (SME). So
we recreated the map they have used in the research drawing similar terrain data.Then
obtained avenues of approaches for the two locations they have used and then compared
it with the result generated by their system and manual result by SME.

Figure 4.7 shows the avenues of approaches for that map given by algorithms used by
the researchers and the SME.

Fig. 4.7 Avenues of approaches by researcher’s algorithms (LEFT) and subject matter
expert(RIGHT), (C. Grindle, M. Lewis, R. Glinton, J. Giampapa, and K. Owens 2004,
Fig. 5 and 6, p. 4)

Then Figure 4.8 shows the our IPB tool generated avenues of approaches for the same
map created by us on our tool.

So the avenues of approaches generated by our tool seems much similar to the avenues
drawn by subject matter experts in the given research. There are basic three avenues
suggested by the SME as well as our system. In the referenced research’s output, only

4.3 Comparison with available systems 45

Fig. 4.8 Avenues of approaches by our IPB tool

two avenues are suggested. Also our result contain risk estimation values for the avenues
as well if enemy locations were annotated.

Also the algorithm used by the referenced research is based on a voronoi diagram
method. So that approach is giving a complex scenario when comes to larger maps as
well as much time as concluded in Figure 4.5. So for larger maps with more details like
buildings, water bodies the voronoi diagram become complex and give very high number
of paths. So removing unwanted paths is difficult. So for each larger and smaller maps
with any amount of features the approach taken by our algorithms is good.

Chapter 5

Conclusions and Future Works

Building a tool for battlefield area evaluation, storing and visualizing information, and
supporting decision making for troop maneuver planning is the primary objective of this
project. In the IPB process also the objective is to build the combined obstacle overlay to
use for troop locating and maneuver planning. Avenues of approach, Engagement areas,
Defensible terrain are some final high level information obtained through the combined
obstacle overlay. In this research we could develop algorithms and the tool to generate
and display avenues of approach successfully.

we looked at the low level environmental factors such as ground, and environment
data. We developed a database of predefined terrain features data like building, elevation,
vegetation, water and roads for any location. In this project we just included data for
only Sri Lanka. So any default terrain data for a battlefield are automatically obtained
by the tool. Then we build a mechanism to display in on the map as overlays. Also
implemented method to put user defined features to overlays. We could developed a
backend to store, edit and give the battlefield data separately. Using a REST API, we
connected the backend with frontend IPB tool to enable operations on overlays.

We obtained trafficability grid using a grid based model for processing overlay data.
In the decision support development part we explored three different approaches to
use trafficbilty grid to generate avenues of approach, which was a main requirement in
IPB process. Finally we compared and further developed the best and more practical
approach from those three. we finally developed the algorithms for the avenues of
approach generation. Then We developed algorithms to find threat level for paths due
to enemy. Finally we compared our output avenues with available paths generating
platforms like Google maps and the avenues suggested by subject matter experts in
related researches.

47

As planned in milestones we implemented only avenues of approaches finding using
trafficability grid. So there are few other high-level terrain information such as key
terrain, defensible terrain and engagement areas. So as a future work those goals must
be accomplished.

Also there are few other terrain information that need to be fused with terrain data
like weather and soil type. So we couldn’t combine those data due to lack of those data.
If those data also got fused, the we could obtain more accurate results. So that need to
be done as a future target.

Also when considering the threat from enemy we developed the algorithm to change
the enemy range of threat according to elevation, vegetation, surrounding buildings and
height of enemy building. So in future works, enemy must be more customized like
several types of enemy like snipers, normal ones, scouts so on. Then that type also will
effect the enemy range.

Also currently we are obtaining the threat from enemy to the avenues. so in future
version when there is a considerable high threat from a enemy location to a path, that
path should be minimized to avoid that threat making a new path.

References

[1] P.Skalický and T.Palasiewicz, “Intelligence preparation of the battlefield as a part
of knowledge development,” 2017.

[2] R. Glinton, S. Owens, J. Giampapa, K. Sycara, C. Grindle, and M. Lewis, “Terrain-
based information fusion and inference,” Proc. Seventh Int. Conf. Inf. Fusion,
FUSION 2004, vol. 1, pp. 338–345, 2004.

[3] C. Grindle, M. Lewis, R. Glinton, J. Giampapa, and K. Owens, Sean Sycara, “Au-
tomating Terrain Analysis: Algorithms for Intelligence Preparation of the Battlefield,”
Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 48,
no. 3, pp. 533–537, 2004.

[4] C. J. James Donlon and K. D. Forbus, “Using a Geographic Information System for
Qualitative Spatial Reasoning about Trafficability,” Proc. QR99, pp. 1–11, 1999.

[5] K. K. Rowel and H. Ranasinghe, “Impact of gis modelling in military operational
planning..”

[6] E. D. Porter, “An overview of the army gis research program,” 1987.

[7] W. Headquarters, Department of the Army, “Terrain analysis,” Encyclopedia of
Geographic Information Science, 1990.

[8] M. C. A. Agee, “INTELLIGENCE PREPARATION OF THE BATTLEFIELD
(IPB),” Society, vol. 1387, no. 22, pp. 1383–1387, 1987.

[9] U. W. Mark Meeder, Tobias Aebi, “The influence of slope on walking activity and
the pedestrian modal share,” 20th EURO Working Group on Transportation Meeting,
2017.

[10] D. E. Sidran, “TIGER: AN UNSUPERVISED MACHINE LEARNING TACTICAL
INFERENCE GENERATOR,” 2009.

References 49

[11] P. Svenson and H. Sidenbladh, “Determining possible avenues of approach using
ANT,” 2003.

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Background
	1.2 The problem
	1.3 The proposed solution

	2 Related work
	2.1 IPB in other countries
	2.2 Use of Geographical Information System (GIS)
	2.3 Terrain Analysis
	2.4 IPB Algorithms

	3 Design and Implementation
	3.1 Work Breakdown
	3.2 Implementation
	3.2.1 Web-based platform to display overlays on a map.
	3.2.2 Infrastructure to efficiently store data for overlays.
	3.2.3 Integrating the data storing mechanism with graphical user interface.
	3.2.4 A grid based combined obstacle overlay by collecting the vector overlays to a grid.
	3.2.5 Generating the potential mobility corridors in the terrain.
	3.2.6 Risk evaluation of corridors to select safest avenues of approach

	4 Results and Analysis
	4.1 Comparison of approaches
	4.1.1 Generalized Voronoi Diagram Method
	4.1.2 k-shortest paths algorithm
	4.1.3 Dijkstra’s based path removing algorithm

	4.2 Comparison Results
	4.3 Comparison with available systems
	4.3.1 Google map directions
	4.3.2 Comparison with result from a related works

	5 Conclusions and Future Works
	References

